Difference between revisions of "Unique Rectangle"
(Created page with "A '''Unique Rectangle''' is a Deadly Pattern formed by 4 cells that share 2 rows, 2 columns and 2 boxes. In Sudoku Variations with additional constra...") |
|||
Line 4: | Line 4: | ||
Here is an example: | Here is an example: | ||
− | + | <table border="2" cellpadding="0" cellspacing="0"> | |
+ | <tr> | ||
+ | <td> | ||
+ | <table border="1" cellpadding="2" cellspacing="0" style="border-top-color:#c0c0c0;border-left-color:#c0c0c0;background:#f8f8f8;font-face:courier new;text-align:center"> | ||
+ | <tr> | ||
+ | <td width="20px"> 12 | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> 12 | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr></table> | ||
+ | </td><td> | ||
+ | <table border="1" cellpadding="2" cellspacing="0" style="border-top-color:#c0c0c0;border-left-color:#c0c0c0;background:#f8f8f8;font-face:courier new;text-align:center"> | ||
+ | <tr> | ||
+ | <td width="20px"> 12 | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> 12 | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr></table> | ||
+ | </td><td> | ||
+ | <table border="1" cellpadding="2" cellspacing="0" style="border-top-color:#c0c0c0;border-left-color:#c0c0c0;background:#f8f8f8;font-face:courier new;text-align:center"> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr></table> | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | <table border="1" cellpadding="2" cellspacing="0" style="border-top-color:#c0c0c0;border-left-color:#c0c0c0;background:#f8f8f8;font-face:courier new;text-align:center"> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr></table> | ||
+ | </td><td> | ||
+ | <table border="1" cellpadding="2" cellspacing="0" style="border-top-color:#c0c0c0;border-left-color:#c0c0c0;background:#f8f8f8;font-face:courier new;text-align:center"> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr></table> | ||
+ | </td><td> | ||
+ | <table border="1" cellpadding="2" cellspacing="0" style="border-top-color:#c0c0c0;border-left-color:#c0c0c0;background:#f8f8f8;font-face:courier new;text-align:center"> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr></table> | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | <table border="1" cellpadding="2" cellspacing="0" style="border-top-color:#c0c0c0;border-left-color:#c0c0c0;background:#f8f8f8;font-face:courier new;text-align:center"> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr></table> | ||
+ | </td><td> | ||
+ | <table border="1" cellpadding="2" cellspacing="0" style="border-top-color:#c0c0c0;border-left-color:#c0c0c0;background:#f8f8f8;font-face:courier new;text-align:center"> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr></table> | ||
+ | </td><td> | ||
+ | <table border="1" cellpadding="2" cellspacing="0" style="border-top-color:#c0c0c0;border-left-color:#c0c0c0;background:#f8f8f8;font-face:courier new;text-align:center"> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr> | ||
+ | <tr> | ||
+ | <td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td><td width="20px"> . | ||
+ | </td></tr></table> | ||
+ | </td></tr></table> | ||
Rows 1 and 2, columns 1 and 4 and boxes 1 and 2 each contain 2 cells from this pattern. All cells have candidates 1 and 2. There are 2 ways to complete this pattern. | Rows 1 and 2, columns 1 and 4 and boxes 1 and 2 each contain 2 cells from this pattern. All cells have candidates 1 and 2. There are 2 ways to complete this pattern. | ||
Revision as of 20:35, 31 May 2020
A Unique Rectangle is a Deadly Pattern formed by 4 cells that share 2 rows, 2 columns and 2 boxes. In Sudoku Variations with additional constraints, each of these constraints must either contain 2 cells or none at all. All 4 cells only have candidates for the same 2 digits.
The name is not well chosen. The pattern causes the puzzle to have at least 2 solutions, so a better name would be non-unique rectangle.
Here is an example:
|
|
| |||||||||||||||||||||||||||
|
|
| |||||||||||||||||||||||||||
|
|
|
Rows 1 and 2, columns 1 and 4 and boxes 1 and 2 each contain 2 cells from this pattern. All cells have candidates 1 and 2. There are 2 ways to complete this pattern.
A more concrete example:
This puzzle has two solutions.
A mistake to be avoided
The following pattern is sometimes mistaken for a unique rectangle. However, this pattern occupies 4 boxes.
This is not a unique rectangle!
|
|
| |||||||||||||||||||||||||||
|
|
| |||||||||||||||||||||||||||
|
|
|